
The AI Query Optimizer 

Features in Db2 Version 12.1

Calisto Zuzarte

IBM

Platform: LUW

Tridex Db2 LUW 
September 19th 

2024



Agenda

• Motivation
• Db2 Query Optimization 
• AI Optimizer versus the “Legendary” Optimizer
• AI Optimizer Goals 

• V12 Phase 1  Functionality
• Model training
• Model prediction
• Model storage and retrieval
• Model externals

• Results



Motivation



Heuristics Statistics AI?

Evolution of Query Optimization



Artificial Intelligence (AI), Machine Learning 
(ML), Neural Networks (NN)

Artificial Intelligence is the simulation of human 
intelligence in machines that are programmed to 
think like humans.

Machine Learning provides AI systems the ability to 
automatically learn and improve from experience 
without being explicitly programmed.

A Neural Network is a series of algorithms that tries 
to recognize underlying relationships in a set of data 
using interconnected nodes much like neurons in a 
human brain 



The Db2 Optimizer

• Generates alternative access subplans

• Estimates cost of each subplan

• Selects the cheapest overall plan

• Costing depends heavily on cardinality estimates

• What is cardinality estimation?



Cardinality Estimation

• Cardinality is the number of rows input to or output from an 
operator

• Generally reduced by predicates (increased with expanding joins)

• Estimated using statistics

• Predicate columns are generally assumed to be independent

• Errors of many orders of magnitude can occur due to skew and 
correlation

• How can we improve cardinality estimates?



Improving Cardinality Estimates

                1136.92
                    HSJOIN
                    (   4)
                     90013
                     67956
           /----------+----------\

        2e+06                  1136.92
       TBSCAN                    ^HSJOIN
       (   5)                    (   6)
       469.792                    89537
         344                      67612
         |                 /-------+-------\

        2e+06        2.87997e+08      0.288374
 CO-TABLE: DB2INST1    TBSCAN              TBSCAN

    CUSTOMER (   7)              (   8)
         Q1            88366.6             274.207
                        67383                229
                         |                   |
                     2.87997e+08            73049
                 CO-TABLE: DB2INST1       DB2INST1

                   STORE_SALES     DATE_DIM
                         Q3                  Q2

1000X off !!! 

         457723
                    HSJOIN
                    (   4)
                     90013
                     67956
           /----------+----------\

        2e+06                  457723
       TBSCAN                    ^HSJOIN
       (   5)                    (   6)
       469.792                    89537
         344                      67612
         |                 /-------+-------\

        2e+06        2.87997e+08      116.099
 CO-TABLE: DB2INST1    TBSCAN              TBSCAN

    CUSTOMER (   7)              (   8)
         Q1            88366.6             274.207
                        67383                229
                         |                   |
                     2.87997e+08            73049
                 CO-TABLE: DB2INST1       DB2INST1

                   STORE_SALES     DATE_DIM
                         Q3                  Q2

         

                       9.05383e+06
                             ^HSJOIN
                             (   4)
                             90083.4
                              67956
                     /---------+----------\

            9.05383e+06       2e+06
                 ^HSJOIN                  TBSCAN
                 (   5)                   (   8)
                 89564.4                  469.792
                  67612                     344
           /-------+-------\                |

     2.87997e+08     116.099   2e+06
       TBSCAN              TBSCAN   CO-TABLE: DB2INST1

       (   6)              (   7)      CUSTOMER
       88366.6             274.214          Q1
        67383                229
         |                   |
     2.87997e+08            73049
 CO-TABLE: DB2INST1  CO-TABLE: DB2INST1
   STORE_SALES   DATE_DIM
         Q3                  Q2

Default Statistics
With additional 

Column Group Statistics
With additional 
Statistical Views

20X off !!! Close Estimate and Better Plan

Actual : 10,113,972

 ☺



Can AI do Better?

Optimizer Challenges 

Development 
Effort

Tuning Effort
Performance 

Stability

Adapt to User 
Workloads

Learn from 
Optimizer and 

Runtime 
feedback

Adapt to User 
Data

Benefits

AI Query Optimizer Goals

Achieve 
Reliable 

Performance

Simplify 
Optimizer 

Development

Automate 
Everything

Join Cardinality 
Estimation

Query Rewrite,

Tuning,

Other aspects 
…

Local Predicate 
Cardinality 
Estimation

Infuse AI Gradually



Our First Prototype in 2013
Research Paper Published in 2015

• “Cardinality Estimation Using Neural Networks” CASCON 2015: 53-59. Henry 
Liu, Mingbin Xu, Ziting Yu, Vincent Corvinelli, Calisto Zuzarte

• https://dl.acm.org/citation.cfm?id=2886453

Input Layer

Output Layer

Hidden Layer

☺ 

Me

https://dblp.org/db/conf/cascon/cascon2015.html


Input Layer
Features
(Column 

Predicates)

Output Layer
(selectivity)

…… …Activation(
weights.dot(prevNeurons))

Y = f(W • X + b)

…

  WHERE T1.A < 15 AND
        T1.C > 0

0.55

How Do Model Cardinality Estimates Work?





AI Query Optimizer in V12 



AI Optimizer Coverage in Phase 1 in V12

• Cardinality estimation for a subset of local predicates using an ML 
model

• Model training through auto-runstats

• Model prediction during query optimization

• Model policies

• Explain support 

• DDL to disable/enable, revert, and drop models



Productization of the AI Query Optimizer

Security / 
Access Control

Audit

Appropriate 
Error Messages

Dependency 
Management

Better 
Configuration 
Management

Activity Logging

DDL / Model 
Policy for 

Better Model 
Management

Explain Support
(Mod Pack)

Slightly Larger 
Model Size

20-30 Kb ➔ 

        20-60 Kb

Improved 
Training Time

Avg: 60s ➔ 40s

Increased 
Accuracy and  

Number of 
Columns in the 

Model

SYSAIMODELS
Catalog +

SYSCAT Views



Predicate Support

• Supported
• Local predicates with:

• Equality
• Range
• BETWEEN
• IN
• OR
• LIKE with supported patterns such as no wildcards (=) or trailing wildcard (BETWEEN

• Not yet supported
• Equality join predicates 
• Multi-column and non-equality join predicates
• Predicates with host variables or parameter markers not using REOPT
• Predicates with expressions around the columns



Examples of Predicates Supported or Not 
Yet Supported in vNext

SELECT * FROM T1, T2
WHERE

 T1.C1 = ‘abc’ AND
 T1.C6 IN (5, 3, 205) AND
 T1.C2 BETWEEN 5 AND 10 AND
 T2.C3 <= 120 AND
 ((T1.C4 > 5 AND T1.C5 < 20) OR
 (T1.C4 < 2 AND T1.C5 = 100)) AND

      T1.C5 LIKE ‘string%’ AND
 T1.C0 = T2.C0 AND
 T1.C3 = ? AND
 MOD(T1.C4, 10) = 1

Local Predicates with Equality, 
Range, Between , IN, OR

Pair-Wise Equality Join Predicates

(targeted for vNext mod pack

Predicates With Parameter Markers

Predicates With Expressions

(These will be processed by the 
traditional optimizer)



Interesting Scenarios

• Correlation between columns with multiple range predicates
• SELECT 

   GUEST_LAST_NAME, ARRIVAL_DATE, DEPARTURE_DATE 
FROM 
    HOTEL_DB
WHERE 

(ARRIVAL_DATE <= ‘2019-12-25’ and DEPARTURE_DATE >= ‘2019-12-25’) OR
(ARRIVAL_DATE <= ‘2018-12-25’ and DEPARTURE_DATE >= ‘2018-12-25’) OR
(ARRIVAL_DATE <= ‘2017-12-25’ and DEPARTURE_DATE >= ‘2017-12-25’) 

• Correlation between equality predicates and range predicates
• SELECT GUEST_LAST_NAME, ARRIVAL_DATE, DEPARTURE_DATE 

FROM 
    HOTEL_DB
WHERE 
    DATE_COL BETWEEN  ‘2019-08-01’ and  ‘2019-08-31’) AND
    COMPANY = ‘IBM’



Training the Model (1/2)

Model Discovery

Finds correlated pairs 
of columns to limit 

training time

Generate training 
Queries 

Sample of data used to 
generate queries and 

selectivity labels

Create, Train and 
Store the Model

Model Ready for 
Use By The 
Optimizer

AUTO RUNSTATS



Training the Model (2/2)

During automatic 
statistics collection, 
sample data is 
retrieved from the 
table. 

Model discovery 
finds correlated 
columns using the 
sample data

If model discovery 
finds correlations, 
model training 
begins to create a 
model

The trained model 
is stored in the 
catalogs



Training the 
Neural Network

…… …
Input Features

Predicate set represented 
as range predicates using 

transformed constant 
values and normalized 

column statistics 

Selectivity
label



Retraining a Model

• When
• Enough data change

• Trigger stats collection

• How
• Drive model discovery/training again

• Create a brand-new model instead of fine-tuning an existing model

• Previously discovered correlated columns are preserved

• New correlations are added

• Retrained model is stored as a new record in the catalog

• Old model is still present, we always keep two records for REVERT usage



Using the Model (1/1)

sqlnq_SqmlCardEst
Model (compiler) 

object

Optimizer passes 
predicates

Model predicts 
selectivity

Optimizer uses 
prediction

QUERY 
COMPILATION



Using the Model (2/2)

The Optimizer 
sends eligible 
predicates to the 
model

The Optimizer uses 
the prediction for 
cardinality 
estimation

The model obtains 
a selectivity 
prediction for the 
predicate set

sqlnq_sqmlCardEst
Model object 
created for each 
table in query with 
model



Using the 
Neural Network

…… …
Input Features

Predicate set represented 
as range predicates using 

transformed constant 
values and normalized 

column statistics 

Predicted 
Selectivity



Storage, Retrieval and Model Information

• New catalog table SYSIBM.SYSAIMODELS

• Catalog cache. Only most recent version of each model is cached

• SYSIBM.SYSDEPENDENCIES. Useful for looking up models based on 
the table name and vice versa

• Looking up details of the model:
SELECT MODELSCHEMA, MODELNAME, CREATE_TIME, 
TABCOLUMNS, ISENABLED, VERSION FROM 
SYSCAT.AIOPT_TABLECARDMODELS WHERE TABNAME = ‘T1’;



Turning on the AI Optimizer

• The AI Optimizer is automatically turned on for newly created 
databases

• For existing databases, the AI optimizer can be turned on as follows:
• New settings under AUTO_MAINT

• Automatic maintenance   (AUTO_MAINT) = ON
•  Automatic AI maintenance   (AUTO_AI_MAINT) = ON
•  AI Optimizer  (AUTO_AI_OPTIMIZER) = OFF
•  Automatic Model Discovery  (AUTO_MODEL_DISCOVER) = ON

• Turning on the AI Optimizer
• db2 update db cfg for <dbname> using AUTO_AI_OPTIMIZER ON



Controlling Model Use in the Optimizer

• A switch is available to see the difference in the estimates using 
the model versus the estimates in the traditional optimizer

• db2set DB2_SELECTIVITY=MODEL_PRED_SEL ON

• db2set DB2_SELECTIVITY=MODEL_PRED_SEL OFF

• This is a good way of validating performance without dropping a 
model



DB2_SELECTIVITY=
MODEL_PRED_SEL

• Models are loaded 
into catalog cache

• Predictions are used in 
the Optimizer

• No models are loaded

• Optimizer uses 
traditional algorithms 
to estimate cardinality

ON OFF

• Is ON by default but only takes 
effect when AUTO_AI_OPTIMIZER is 
also ON

• Can be embedded into a 
guideline/profile to control the use 
of models on a per query basis

Controlling Model Usage in Optimizer



DDL for Model Control

• Two new DDL commands: ALTER MODEL and DROP MODEL
• Can specify a model by using a table name

• DROP MODEL will drop models

• ALTER MODEL will alter the model
• ENABLE/DISABLE controls model discovery/training/usage

• REVERT swaps most recent model with older model



DDL 



2022-03-11-12.06.49.326064-480 I532207E727           LEVEL: Event

…

DISCOVER: TABLE CARDINALITY MODEL : Object name with schema : AT "2022-03-11-12.06.49.325975" : BY 

"Asynchronous" : start

OBJECT  : Object name with schema, 34 bytes

MLO_DBCFG_ENG_RANGE.MIXEDDATA_AUTO

IMPACT  : None

DATA #1 : String, 18 bytes

Automatic Runstats

2022-03-11-12.06.49.328033-480 I532935E871           LEVEL: Event

…

DISCOVER: TABLE CARDINALITY MODEL : Object name with schema : AT "2022-03-11-12.06.49.327990" : BY 

"Asynchronous" : success

OBJECT  : Object name with schema, 34 bytes

MLO_DBCFG_ENG_RANGE.MIXEDDATA_AUTO

IMPACT  : None

DATA #1 : String, 18 bytes

Automatic Runstats

DATA #2 : String, 113 bytes

TABLE CARDINALITY MODEL ON "MLO_DBCFG_ENG_RANGE"."MIXEDDATA_AUTO" ON COLUMNS ("DISTCOL", "INTCOL1", "INTCOL2")

Model Discovery Logging
Entries added 
to statistics log



2022-03-11-12.06.49.329270-480 I534521E882           LEVEL: Event

…

TRAIN   : TABLE CARDINALITY MODEL : Object name with schema : AT "2022-03-11-12.06.49.329230" : BY "Asynchronous" : start

OBJECT  : Object name with schema, 34 bytes

MLO_DBCFG_ENG_RANGE.MIXEDDATA_AUTO

IMPACT  : None

DATA #1 : String, 18 bytes

Automatic Runstats

DATA #2 : String, 113 bytes

TABLE CARDINALITY MODEL ON "MLO_DBCFG_ENG_RANGE"."MIXEDDATA_AUTO" ON COLUMNS ("DISTCOL", "INTCOL1", "INTCOL2")

2022-03-11-12.06.54.367094-480 I535404E742           LEVEL: Event

…

TRAIN   : TABLE CARDINALITY MODEL : Object name with schema : AT "2022-03-11-12.06.54.367035" : BY "Asynchronous" : success

OBJECT  : Object name with schema, 34 bytes

MLO_DBCFG_ENG_RANGE.MIXEDDATA_AUTO

IMPACT  : None

DATA #1 : String, 18 bytes

Automatic Runstats

DATA #2 : String, 1174 bytes

Model metrics: Rating: 3 (Very good), Table samples: 33 (33), Flags: 0x0, Training time: 5059 (1/20/11/0), Validation MSE: 0.000424, Accuracy bucket counts: 

0,791,4665,1213,0, Accuracy bucket means: 0.000000,-1.244713,-0.080033,1.228198,0.000000

Table column cardinalities: 10,10,10

Sample column cardinalities: 10,10,10

Sample column mappings: 10,10,10

Column flags: 00000000,00000000,00000000

Base algorithm metrics: Training metric: 0.000413, Validation metric: 0.000426, Previous validation metric: 0.000428, Pre-training validation metric: 

0.001477, Used training iterations: 21, Configured training iterations: 39, Training set size: 66695, Pre-training time: 430, Training time: 2544, Accuracy 

bucket counts: 0,878,4578,1213,0, Accuracy bucket means: 0.000000,-1.232078,-0.063045,1.228198,0.000000

Low selectivity algorithm metrics: Training metric: 0.000000, Validation metric: 0.000020, Previous validation metric: 0.000000, Pre-training validation 

metric: 0.000002, Used training iterations: 36, Configured training iterations: 44, Training set size: 38031, Pre-training time: 163, Training time: 2483, 

Accuracy bucket counts: 2,5,2910,0,0, Accuracy bucket means: -2.000233,-1.999801,0.058431,0.000000,0.000000

Model Training Logging
Entries added 
to statistics log



Model Policies

• Configure which tables can have models

• Model policies will still allow automatic statistics collection

• Model policies do not affect model retraining

• Auto-runstats policies will impact model discovery and training

<Db2AutoAiOptPolicy>
 <ModelDiscoveryTableScope modelType='TableCardModel'>

 <FilterCondition>
       WHERE (TABSCHEMA,TABNAME) NOT IN (VALUES ’TPCDS’,’STORE_SALES’))
    </FilterCondition>
 </ModelDiscoveryTableScope>

</Db2AutoAiOptPolicy>



Identify Model Usage in EXPLAIN

• Explain plan operators indicate if an 
individual predicate had its selectivity 
computed using a model

• Each relevant operator include the list 
of predicates the model computed the 
combined selectivity for

• Model information will also be listed in 
the “objects used” and includes the 
columns the model was trained on

• Each area will also show the model 
schema and name

4) TBSCAN: (Table Scan)

 Predicates:

 ----------

 8) Sargable Predicate, 

  Comparison Operator: Less Than or Equal (<=)

  Subquery Input Required: No

  Filter Factor: 0.934924

  Filter Factor Source: SYSIBM. SQL240913170855940498

  Predicate Text:

  --------------

  …

 Table Cardinality Model Predicates:

 -----------------------------------

 Model: SYSIBM.SQL240913170855940498

 Predicates:

  1) (Q3.BILL_AMT1 <= 746814)

  2) (150 <= Q3.BILL_AMT1)

  3) (Q3.PAY_2 <= 2)

  4) (0 <= Q3.PAY_2)

                      …
Objects Used in Access Plan:

---------------------------

 Schema:   DEMO

 Name:     CREDIT_HISTORY_DATA

 Type:     Table

  ...

  Model Schema: SYSIBM

  Model Name: SQL240913170855940498

  Columns in model:

   BILL_AMT1

   PAY_2
                                 …



Results



Model Size and Training Time

TPCDS TABLES
Model Size in 
KiB

Time in 
seconds

CALL_CENTER                   5 < 1
CATALOG_PAGE                  66 32

CATALOG_RETURNS               62 54

CATALOG_SALES                 65 52

CUSTOMER                      78 53

CUSTOMER_ADDRESS              49 42

CUSTOMER_DEMOGRAPHICS         20 44

DATE_DIM                      68 46

HOUSEHOLD_DEMOGRAPHICS        11 29

INCOME_BAND                   9 11

INVENTORY                     11 21

ITEM                          176 72

PROMOTION                     19 30

REASON                        11 24

SHIP_MODE                     12 20

STORE                         11 13

STORE_RETURNS                 54 62

STORE_SALES                   64 66

TIME_DIM                      34 46

WAREHOUSE                     5 < 1

WEB_PAGE                      11 26

WEB_RETURNS                   62 59

WEB_SALES                     65 55

WEB_SITE                      40 54

Average Model Size = ~42KB

Average Training Time = ~38s



Cardinality Estimation Accuracy

32K Generated 
Queries against 
TPCDS schema

1-5 predicates 
consisting of 
equality, range, IN

Non-empty query 
results



Queries based on 
motor-vehicle 
schema

Equality and IN 
predicates

All required 
combinations of 
column group stats

0 indicates 
perfect 
estimate

Cardinality Estimation Accuracy



Performance of Some Problematic Queries 
From a Couple of Db2 Users



AI Query Optimizer With a Problematic Query

4838.66 (4.5729e+06)

                    HSJOIN

                    (   4)

                    40713.1 

                     6668 

           /----------+-----------\

       100000                     4838.66 (4.5729e+06)
       TBSCAN                     HSJOIN

       (   5)                     (   6)

       1510.71                    38986.2 

         19                        6649 

         |               /----------+-----------\

       100000        100000                    7.9354 (15032)
 CO-TABLE: DEMO      TBSCAN                     HSJOIN

  INSURANCE_HISTORY  (   7)                     (   8)

         Q4          3565.28                    35295.6 

                       37                        6612 

                       |               /----------+-----------\

                     100000      10.102 (1503)     128.827 (127)
               CO-TABLE: DEMO      HSJOIN                     TBSCAN

                PURCHASE_HISTORY   (   9)                     (  12)

                       Q5          35180.2                    114.982 

                                    6596                        16 

                             /-------+--------\                 |

              (50245)7001.44    (106) 101.207         164 
                         TBSCAN               TBSCAN    CO-TABLE: DEMO    

                         (  10)               (  11)   SENTIMENT_SCORE_DATA

                         35047.6              114.982           Q1

                          6580                  16 

                           |                    |

                          99995                 164 

                   CO-TABLE: DEMO       CO-TABLE: DEMO    

                   CREDIT_HISTORY_DATA      POLICE_DATA

                           Q3                   Q2

37787.2 (4.5729e+06)

                                  HSJOIN

                                  (   4)

                                  44985.6 

                                   6668 

                        /-----------+-----------\

    (4.5729e+06) 37787.2            100000 
                    HSJOIN                      TBSCAN

                    (   5)                      (  12)

                    43151.7                     1510.71 

                     6649                         19 

           /----------+----------\                |

       100000            (7516) 61.971  100000 
       TBSCAN                    HSJOIN   CO-TABLE: DEMO    

       (   6)                    (   7)    INSURANCE_HISTORY

       3565.28                   39450.2          Q4

         37                       6612 

         |               /---------+----------\

       100000        54677.3 (50245) 79.5008 (82)
 CO-TABLE: DEMO      TBSCAN                   HSJOIN

  PURCHASE_HISTORY   (   8)                   (   9)

         Q5          39085.2                  230.664 

                      6580                      32 

                       |                /-------+--------\

                      99995         128.827 (127)        101.207 (106)

               CO-TABLE: DEMO       TBSCAN               TBSCAN

               CREDIT_HISTORY_DATA  (  10)               (  11)

                       Q3           114.982              114.982 

                                      16                   16 

                                      |                    |

                                      164                  164 

                              CO-TABLE: DEMO       CO-TABLE: DEMO    

                             SENTIMENT_SCORE_DATA      POLICE_DATA

                                      Q1                   Q2

CHD.PAY_0 IN (0,1,2) AND

CHD.PAY_2 BETWEEN 0 AND 2 AND

CHD.BILL_AMT1 BETWEEN 150 AND 746814 

AND

…

Traditional
Algorithms

AI Model



11.5.6 Technology Preview

The AI Query Optimizer in Db2

AI Query Optimizer Features in Db2 Version 12.1

CASCON 2015: Cardinality estimation using neural networks  

CASCON 2021 Best Industry Paper: Query predicate selectivity using machine learning in Db2:   

11.5.6 Technology Preview

The AI Query Optimizer in Db2

AI Query Optimizer Features in Db2 Version 12.1

CASCON 2015: Cardinality estimation using neural networks  

CASCON 2021 Best Industry Paper: Query predicate selectivity using machine learning in Db2:   

Learn More

https://www.ibm.com/support/pages/machine-learning-optimizer-technology-preview-db2-1156
https://www.idug.org/news/the-ai-query-optimizer-in-db2
https://www.idug.org/news/the-ai-query-optimizer-features-in-db2-version121
https://dl.acm.org/doi/10.5555/2886444.2886453
https://dl.acm.org/doi/10.5555/3507788.3507808


Machine Learning Optimization For 
Production Use in vNext

Calisto Zuzarte

Calisto@ca.ibm.com

Tridex Db2 LUW 
September 19th 

2024

Tridex


	Slide 1
	Slide 2: Agenda
	Slide 3: Motivation
	Slide 4: Evolution of Query Optimization
	Slide 5: Artificial Intelligence (AI), Machine Learning (ML), Neural Networks (NN)
	Slide 6: The Db2 Optimizer
	Slide 7: Cardinality Estimation
	Slide 8: Improving Cardinality Estimates
	Slide 9: Can AI do Better?
	Slide 10: Our First Prototype in 2013 Research Paper Published in 2015
	Slide 11
	Slide 12
	Slide 13: AI Query Optimizer in V12 
	Slide 14: AI Optimizer Coverage in Phase 1 in V12
	Slide 15: Productization of the AI Query Optimizer
	Slide 16: Predicate Support
	Slide 17: Examples of Predicates Supported or Not Yet Supported in vNext
	Slide 18: Interesting Scenarios 
	Slide 19: Training the Model (1/2)
	Slide 20: Training the Model (2/2)
	Slide 21: Training the  Neural Network
	Slide 22: Retraining a Model
	Slide 23: Using the Model (1/1)
	Slide 24: Using the Model (2/2)
	Slide 25: Using the  Neural Network
	Slide 26: Storage, Retrieval and Model Information
	Slide 27: Turning on the AI Optimizer
	Slide 28: Controlling Model Use in the Optimizer
	Slide 29
	Slide 30: DDL for Model Control
	Slide 31: DDL 
	Slide 32
	Slide 33
	Slide 34: Model Policies
	Slide 35
	Slide 36: Results
	Slide 37: Model Size and Training Time
	Slide 38: Cardinality Estimation Accuracy
	Slide 39
	Slide 40: Performance of Some Problematic Queries From a Couple of Db2 Users
	Slide 41
	Slide 42
	Slide 43

